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ABSTRACT. With the rapid development of deep learning methods in artificial intelligence,
the learning ability of neural network models has also progressed with the increase of
model size and has been able to challenge many complex human tasks. ResNet, a residual
network, is a milestone in the development of deep neural networks, and its unique
residual connectivity method makes deep model training possible. This study analyzes
residual networks' construction, principles, and code implementation process. The
research on domestic and foreign artificial intelligence applications applying the residual
network and its variants in recent years is summarized. The application of residual
networks in enterprise projects is also analyzed, and the opportunities of residual
networks in today's deep learning model landscape are sorted out.
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1. Introduction. Artificial Intelligence (Al) is an important area of computer science and is
considered one of the three frontier technologies of the 21st century. Since 2006, with the
emergence of "deep learning neural networks" proposed by Hinton[1], deep learning
methods have achieved great success in the field of artificial intelligence, with remarkable
results in various tasks such as image classification, machine translation, decision
management, etc. It has become one of the most mainstream techniques in the field of
artificial intelligence today. As many researchers in the field continue to innovate on deep
learning neural networks, Al is widely used and productive in many disciplines, and
researchers expect to use deep learning neural network methods to solve more complex and
realistic human problems.

For the model to achieve better results in learning complex problems, the neural network
must have a more powerful nonlinear representation, be able to fit more complex feature
inputs and learn more complex variations. This means that the neural network must be
supported by sufficiently high model complexity. The development in complexity of a
neural network can depend on the increase in both width and depth dimensions, and the
increase in depth is often less costly than the increase in width. Therefore, sufficient
network depth becomes necessary for the model to be competent in complex tasks. How to
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effectively increase the network depth becomes an important topic in the field of deep
learning.

2. Residual network background. Before the introduction of the residual network ResNet
[2] in 2015, the number of layers of most neural network models was mostly kept below 30.
In the ImageNet competition in 2012, AlexNet [3] used dropout in the fully connected layer
for the first time to reduce overfitting and used the Relu activation function to achieve an
accuracy much higher than the second place. At this time, AlexNet has 8 layers, of which
the first 5 are convolutional layers and the last 3 are fully connected. 2014 Oxford
University team proposed the VGG model [4] developed from AlexNet, featuring multiple
3*3 convolutional kernels and 2*2 pooling layers, with two versions of 16 and 19 layers. In
the same year, GoogleNet [5] proposed the introduction of the Inception module to
increase the network width to enhance the model complexity to avoid the negative effect of
increasing the number of layers of the network, and GoogLeNet without fully connected
layers has a depth of 22. The performance of the model in this period was severely limited
by the depth of the model, and the optimization problem brought by deepening the number
of layers of the network became the bottleneck of deep network training at that time.
Increasing the depth of the model will bring about the phenomenon of Gradient Explosion
or Gradient Extinction, which makes the performance of the model decrease instead of
increase when the network is deepened and is therefore called the degradation
phenomenon.

The ResNet residual network was first proposed by Kai-Ming He in his paper "Deep
Residual Learning for Image Recognition" in 2015. The core idea of the residual network is
that the output of the previous layer of the neural network is directly added to the input of
the current layer to realize the learning of residuals by the network to achieve a better
training effect, which can be expressed by the formula x,,; =x+ F(x,W;) . The
introduction of the residual learning module makes the residual network easier to optimize
compared with the traditional CNN model so that it can obtain better learning performance
by increasing the depth. The emergence of ResNet has solved the problem of the limited
depth of the neural network model, making the maximum model depth reach an
unprecedented 152 layers. With 152 layers of depth, ResNet achieved first place in the
ImageNet detection, localization, and other tasks competition in 2015. The residual network
was a breakthrough and a milestone in deep learning. It profoundly changed the
architectural design of deep neural network models since then, and has gained wide
application and improvement. The use of residual ideas can still be seen in the most
mainstream Transformer[6], Bert[7] , and other models in the deep learning field today.

3. Principle of residual network.

3.1 Residual connection. The residual block is the core component of a residual network,
which consists of two parts: direct mapping and residual connection. The direct mapping
part generally contains two or more convolutional processes, similar to an ordinary
convolutional block, and residual connectivity is the essential feature of residual blocks.
Residual connectivity, also known as jump connectivity or short-circuit connectivity, is a
process in which the input of the current block is directly added to the output of the final
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layer through a cross-layer connectivity channel, and this processing can fuse features from
different sensory fields. Residual connectivity is very effective in alleviating the problem of
gradient explosion or gradient disappearance associated with deep model training and
improves the performance and efficiency of the model while the network becomes deeper
and wider. It can be said that residual connectivity makes the training of effective deep
models possible.
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FIGURE 1. Schematic diagram of the residual connection

3.2 Residual network structure. There are various versions of residual networks with
different depths, including ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet152, etc.
Different versions of residual networks share some structural design, for example, the
original input is first downsampled by a large 7*7 convolution kernel, all networks use four
residual layers as the main body of the model and downsample the final output feature map
by averaging pooling operation. But they differ in the design of the residual layer
construction and the internal structure of the residual block.

The depths of ResNet-18 and ResNet-34 are relatively low, and their basic residual
blocks consist mainly of two 3*3 convolutional layers. For models with more than 50
layers in-depth, small 1*1 convolutional layers are used at the head and tail of the block to
control the depth of the feature map to cope with the high computational and parametric
count problems caused by the excessive depth of the model. The number of convolutions
contained in each residual layer varies for different depth models, as shown in the
following comparison.
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FIGURE 2. Comparison of different depth residual networks

3.3 Residual network improvement. After the publication of ResNet, the field of deep
learning has produced many more network architectures derived from ResNet. For example,
DenseNet[8], proposed by Huang, G. et al in 2017, further extended the idea of residuals
to interconnect the feature maps of all layers to form a more dense connection mechanism.
ResNeXt[9] is a new version of ResNet proposed by Microsoft ASTRI. It incorporates the
Inception multi-branching strategy on top of ResNet to increase the network width and
further improve the complexity and performance of the network. WideResNet[10] also
increases the network width on top of ResNet, but compared to ResNeXt which relies on
the increase of the number of paths through the network, it achieves the width by expanding
the number of filters in the convolutional layers. In the 2018 proposal SENet[11], the
"Squeeze-and-Extraction" module is added based on ResNet, which can adaptively adjust
the channel map weights to improve the network performance. In Yolo3 [12] DarkNet53,
the residual connection is used extensively, and a convolutional layer with a step size of 2
is used instead of a pooling layer for downsampling to further mitigate the degradation
problem. The accuracy of DarkNet53 with 53 layers in ImageNet is similar to that of
ResNet-152.

4. Residual network implementation code analysis. This section explains the

implementation code of the ResNet algorithm, the source code is from the official Pytorch

repository "vision" on the GitHub platform, available at:
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py.

4.1 Two types of basic residual block source code analysis.

4.1.1 Analysis of the meanings of basic variables and parameters.

(1) expansion: determine whether the number of convolutional kernels of the main branch

has changed in the residual structure

(2) inplanes: input channels of residual blocks

(3) planes: the output channels of the residual block

(4) stride: the sampling interval of the convolution kernel after the input feature map

(5) downSample: whether to adjust the number of channels for down-sampling
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(6) groups: the number of channel separations of group convolution, group=1 for normal
convolution

(7) base_width : Number of base channels

(8) dilation: the spacing of the points of the convolution kernel in the dilated convolution,
ordinary convolution when dilation=1

(9) norm_layer: whether there is a normalized layer

4.1.2 BasicBlock class source code analysis.

class BasicBlock(nn.Module):
expansion: int = 1

def __init__ (self, inplanes, planes, stride=1, downsample=None,
groups=1, base_width=64, dilation=1, norm_layer=None):

super().__init_ ()
if norm_layer is None:

norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:

raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:

raise NotImplementedError("Dilation > 1 not supported in BasicBlock™)
self.convl = conv3x3(inplanes, planes, stride)
self.bnl = norm_layer(planes)
self.relu = nn.RelLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x: Tensor) -> Tensor:
identity = x

self.convl(x)
self.bnl(out)
self.relu(out)

o
<
+
wonon

self.conv2(out)
self.bn2(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out

FIGURE 3. Comparison of different depth residual networks

BasicBlock is the basic residual block used to implement ResNet-18 and ResNet-34, two
relatively shallow networks. The initialization function of this class defines the required
components and adjustable properties in each basic residual block, including 3*3
convolution, normalization, ReLU activation function, downsampled property to decide
whether to downsample, and stride property to adjust the sampling interval of the feature
map. The “if” condition in the initialization function determines that BasicBlock does not
support expanding convolution, group convolution, or increasing the network width.

The forward function in the BasicBlcok class shows how BasicBlock is constructed.
Each basic residual block will be internally forward propagated in the order of 3*3
convolution, normalization, ReLU activation, 3*3 convolution, and normalization. The
final block output is obtained by adding the output out variable of the current layer to the
input identity variable of the representation block and then activating it again. Here is how
the residual connection is implemented and the core feature of the residual block.
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4.1.3 Bottleneck class source code analysis.
class Bottleneck(nn.Module):
expansion: int = 4
def _ init_ (self, inplanes, planes, stride=1, downsample=None,
groups=1, base_width=64, dilation=1, norm_layer=None):
super().__init__ ()
if norm_layer is None:
norm_layer = nn.BatchNorm2d

width = int(planes * (base_width / 64.8)) * groups
self.convl = convlxl(inplanes, width)
self.bnl = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = convlxl(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.RelLU(inplace=True)
self.downsample = downsample
self.stride = stride

de

%

forward(self, x: Tensor) -> Tensor:
identity = x

out
out

self.convl(x)
self.bnl(out)
self.relu(out)

out
out self.conv2(out)
self.bn2(out)

self.relu(out)

out

out

out
out

self.conv3(out)
self.bn3(out)

if self.downsample is not None:
identity = self.downsample(x)

out += identity
out = self.relu(out)

return out

FIGURE 4. Comparison of different depth residual networks

The Bottleneck is the basic residual block used to implement the three deep networks
ResNet-50, ResNet-101, and ResNet-152. Compared with BasicBottle, it has more tuning
space and better scalability. For example, BottleNeck can achieve channel separation by
adjusting the group parameter, increasing the channel width by setting the base width
parameter, and expanding the convolution by setting the dilation parameter. These
processing methods exist mainly to reduce the number of parameters that need to be trained
for deep network models and improve the model training efficiency.

The Bottleneck is the same as BasicBlock in terms of basic components except that a
small 1*1 convolution kernel is added to compress the dimensionality, but there is a
difference in the way the layers are connected. According to the structure shown by the
forward function, the Bottleneck internally propagates forward in the order of 1*1
convolution, normalization, ReLU activation, 3*3 convolution, normalization, ReLU
activation, 1*1 convolution, normalization, residual connection (block input and output
summed), and ReLU activation again.

4.2 Residual network model source code analysis.
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class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1068, zero_init_residual=False,groups=1,
width_per_group=64, replace_stride_with_dilation=None, norm_layer=None):
super().__init_ ()
_log_api_usage_once(self)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer

self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.convl = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bnl = norm_layer(self.inplanes)
self.relu = nn.RelLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layerl = self._make_layer(block, 64, layers[@])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[@8])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm))
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, @)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck) and m.bn3.weight is not None:
nn.init.constant_(m.bn3.weight, @)
elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
nn.init.constant_(m.bn2.weight, @)

FIGURE 5. ResNet model initialization source code

The initialization function _init () in the ResNet class source code explains the building
blocks required for ResNet and defines the initial parameters for some of the layers. In the
input of _init (), the layers parameter is an array that records the number of stacked layers
for each residual layer from layerl to layer4, the replace stride with dilation parameter is
an array that records the size of the dilated convolutional spacing of the three residual
layers layer2, 3, and 4, and the number of input channels is initialized to 64. The most
important part of the overall architecture of ResNet is the residual module of layerl to
layer4. Only layerl is not processed for sampling interval and dilation convolution, while
the other three layers will take down sampling and dilation convolution to reduce the
amount of parameter computation, and the number of channels of the feature map will be
increased to four times the initial one in the process.
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def _forward_impl(self, x: Tensor) -> Tensor:
self.convl(x)

self.bnl(x)

self.relu(x)

self.maxpool(x)

xE M B |
[T T (R

self.layerl(x)
self.layer2(x)
self.layer3(x)
self.layerd4(x)

X X X X

self.avgpool(x)
torch.flatten(x, 1)
self.fc(x)

x X

X
return x

FIGURE 6. ResNet _forward_impl function code

The forward impl function shows the order in which the layers are connected in the
ResNet architecture. The initial image input is first processed by 7*7 convolution,
normalization, ReLU activation, and maximum pooling, and the feature map size is only
one-quarter of the initial image input. Then we enter the residual module, in which the four
residual layers layerl to layer4 are connected sequentially. The final fully connected layer
transforms the number of feature channels in the final output to the number in the
num_classes parameter, which is 1000 by default.

4.3 ResNet input and output formats.

4.3.1 Input format. The image format used by ResNet is a color image with a resolution of
224*224, and the input to the model is a tensor representation of such an image. Images can
be converted into a tensor input of the shape (batch_size, 3, 224, 224) using torch.Tensor
package. The figure below shows an example of a single image, i.e., an input tensor with a
batch size of 1.
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tensor([[[-0.0116, -8.0287, 0.0056, ..., 0.1597, 0.1426, 0.1254],
[-8.0629, -0.0458, -0.0287, ..., 0.0912, 0.1254, 8.1597],
[-0.8458, -08.0972, -0.0287, ..., 0.0912, 0.1597, 0.1939],
[ 8.8447, ©.8618, 0.8447, ..., 1.9920, 1.9920, 1.9749],
[ 8.8618, ©.8618, 0.8789, ..., 1.9578, 1.9578, 1.9578],
[ 0.8961, ©.9132, 0.9303, ..., 1.9578, 1.9749, 1.9578]],
[[ 8.4853, 0.4678, 0.5028, ..., 0.7129, 0.6954, B.6779],
[ 0.4328, 0.4503, 0.4678, ..., 0.6429, 0.6779, 0.7129],
[ 0.4503, 0©.3978, 0.4678, ..., 0.6429, 0.7129, ©.7479],
[ 0.4153, ©.4328, 0.4153, ..., 1.9559, 1.9734, 1.99089],
[ 8.4328, 0.4503, 0.4678, , 1.9384, 1.9559, 1.9734],
[ 8.5203, ©.5378, 0.5378, ..., 1.9384, 1.9734, 1.9734]],
[[ ©.5834, 0.5659, 0.6008, ..., 0.9319, 0.9145, 0.8971],
[ 8.5311, B©.5485, 0.5659, ..., 0.8622, 0.8971, 8.9319],
[ 9.5485, 0.4962, 0.5659, , 0.8622, 0.9319, 0.9668],
[-8.2532, -0.2532, -0.2881, ..., 1.7860, 1.8034, 1.8208],
[-8.2707, -0.2707, -0.2532, ..., 1.7337, 1.7511, 1.7685],
[-8.1835, -0.1835, -0.1835, ..., 1.7163, 1.7511, 1.7685]11])

FIGURE 7. Example of ResNet input tensor

Images with a resolution other than 224*224 can also be transformed to match the input

tensor format by calling Pytorch's “transforms” preprocessing method. the Pytorch image
preprocessing code is as follows.
4.3.2 Output format. The output format of ResNet is related to num classes in the
initialization parameters. Its output is a tensor of the shape (batch_ size, num_classes).
Using the default value of 1000 for this parameter as an example, the sample output graph
of ResNet with a single image batch size=1 is shown below.

tensor([[©.7175, ©.1302, ©.8103, ..., 0.0156, ©.8070, ©.9244]])

FIGURE 8. Example of ResNet input tensor

A row in the output tensor represents the prediction result of an image. Each row
contains num_classes elements, indicating the probability that the image belongs to each
class. For example, if the value of the first element in the first row is 0.7175, it means that
the probability that the first image belongs to class 1 is 71.75%.

5. Review of residual network applications. The application of the ResNet algorithm is
commonly found in intelligent systems in the fields of medical care, transportation, product
quality monitoring, etc., specifically including systems for tasks such as image recognition
and classification, audio recognition and classification, and future event prediction. At
present, domestic research on the application of the ResNet algorithm mainly focuses on
image recognition and classification systems in niche areas, such as adulterated mutton
detection systems, gun species identification systems, etc. These segments often lack data
sets suitable for training and testing deep learning models, and sometimes face the
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problems of few data resources in the field and difficulty in sample collection. Therefore,
researchers need to first build their sample libraries and expand them with data
augmentation methods, and then adapt the traditional ResNet models by, but not limited to,
modifying individual residual units, introducing other mechanisms such as SVM or
attention mechanisms, changing the model architecture to achieve lightweight, etc. In
addition, experiments on ResNet models with a different number of layers are required to
determine the optimal number of ResNet layers on this task.

Foreign research on the application of the ResNet algorithm is more diversified and the
degree of modification of the ResNet algorithm is greater. In addition to traditional image
recognition and classification, ResNet has also been applied to tasks such as urban traffic
flow prediction and human behavior prediction with an added temporal dimension, and
3D-ResNet, which can handle temporal and spatial features, is widely used in these systems
that need to capture spatiotemporal features. The following are some specific applications
of the ResNet algorithm in research.

Yikai Wen, Le Chen, and Yaqiong Fu (2022) designed a ResNetl8 classification
network-based beep tone recognition system[13]. The system first uses a sound card and a
microphone for beeping tone signal radio, then preprocesses the tone signal by coefficient
comparison method for noise reduction, and transforms the processed signal into a signal
time-frequency feature map to ResNet18 network model for analysis and classification, and
the system recognition accuracy reaches 97.5%. The system contains functional modules
such as signal feature display, signal acquisition parameter setting, recognition object
selection, data communication, and data persistence in functional design. Min-Ling Zhu,
Liang-Liang Zhao, and Shou-Jie (2022) studied and implemented an intelligent cattle face
recognition and detection system based on the CNN-ResNet-SVM model[14]. To solve the
problems of less cow face data and high data noise, ResNet and SVM are introduced into
the traditional CNN to achieve faster training speed, higher recognition rate, and stronger
generalization than the traditional CNN. The intelligent cow face recognition system
experimented with a specific model of cell phone camera shooting at the APP side. The
experimental results proved that the fastest recognition speed is around 128ms and the
recognition accuracy is above 95.1%. Dongyu He, and Rongguang Zhu (2022) developed a
smartphone application based on an attention mechanism combined with an inverted
residual network ( CBAM-Invert-ResNet )[15] for fast and accurate detection of lamb
adulteration. The training dataset is firstly constructed by collecting original cell phone
images of different parts of lamb, pork, and adulterated lamb, and augmented with data
enhancement. Then the original residual network is replaced with an inverted residual
structure to improve the model convergence speed and reduce the parameters, and then the
feature weights are reassigned by an attention mechanism. The trained
CBAM-Invert-ResNet50 model has a 61.64% less number of parameters and 61.59% less
size than ResNet50, and the classification accuracy of the mixed-site dataset is at 92.96%.
The model was deployed on mobile for detection, and the detection time was about 0.3 s
per mobile image. Jiaxin Ling and Yonghua Xie (2022) built their sample library of
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defective wood panels and expanded the dataset with data enhancement methods[16],
expanding the sample library to 10678 images. The researchers divided the sample library
into a training set, validation set, and test set, and trained various network models such as
VGG, GoogleNet, and ResNet with different layers and tested them on the test set for
classifying wood panel defects. The researchers also improved the residual unit by
considering ReLLU as a pre-activation of the weight layer to generate a new residual unit.
The experimental results demonstrate that the improved residual network achieves 98.63%
classification accuracy at 50 layers and is most suitable for defective wood panel
classification. Zhou Zhifei, Wu Jinlong (2022) et al. established a firearms image
recognition system based on multi-task cascaded residual networks for the problem of low
efficiency of firearms species recognition[17]. The researchers first constructed the gun
dataset based on the gun image acquisition specification and image enhancement
specification construction. To achieve stable network training with few samples, a
four-stage hierarchical gun image recognition and retrieval model is used to achieve
hierarchical recognition and retrieval from coarse to fine. The network model uses
ResNet18 as the basic building block to obtain advanced retrieval features by combining
the output of the four-stage Softmax loss function. The model achieves 61.12% and 95.28%
recognition accuracy in Rank-1 and Rank-20, respectively.

Huan Zhang, Liangxiao Jiang, et al. (2021) proposed a new model based on the standard
ResNet, a "Cost-Sensitive Residual Convolutional Network" (CS ResNet), which is used to
perform cosmetic defect detection on printed circuit boards (PCBs). [18]CS ResNet is
optimized by minimizing the weighted cross-entropy loss function. CS ResNet achieves the
highest accuracy (0.89-0.91) and the lowest classification error cost on the real PCB
appearance defect dataset. The lowest classification error cost. Yoshiki Kakamu and
Kazuhiro Hotta (2022) used 3D-ResNet[19] capable of processing temporal and spatial
features to identify and predict human behavior in video images with high accuracy to help
humans in the future of medical care. To improve the feature representation of traditional
3D ResNet for small actions, the authors propose a method to extract features by loops in
residual blocks based on convolutional LSTM. The model of this loop mechanism exhibits
higher accuracy than the traditional 3D-ResNet in UCF101, Kinetics-400 and HMDB-51
datasets.Y. Mao, Y. Zeng, et al. (2022) proposed a model consisting of ResNet and
Conformer backbone network (SEKD-RCnet) and its two variants SED RCnet and SSL
RCnet consisting of an integrated sound event localization and detection (SELD)
system[20]. The system achieved significant improvements over the baseline in the
L3DAS22 challenge. Robert Turnbull (2022) used the Resnet-based 3D convolutional
neural network Cov3d for scanning chest CT to detect the presence and severity of
noncoronary pneumonia. The model was trained on the COV19-CT-DB dataset and
manually labeled by experts and obtained a Macro-fl score of 87.87 on the test set for new
coronary pneumonia detection. Rui He et al. (2022) developed a spatiotemporal 3D
multi-scale ConvLSTM Resnet network and applied it to an intelligent transportation
system (ITS)[21] to accurately predict the future traffic flow. The system uses 3D
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DenseNet to capture the spatiotemporal information of traffic frames by considering the
traffic data slices at each moment as "traffic frames", and introduces ConvLSTM Resnet to
solve the problem that traditional Resnet cannot capture the spatial correlation over long
distances. The model outperforms state-of-the-art methods for citywide traffic flow
prediction and shows good generalizability for the task of predicting passenger travel
demand.

6. Application of residual network in enterprise practice. In the current Al field,
large-scale pre-trained models represented by BERT and GPT are just at the right time. By
pre-training on a large amount of general data, the generality of the model is greatly
improved, and on this basis, the model can be fine-tuned for downstream tasks to obtain the
best performance. "Pre-training" plus "fine-tuning" has become the dominant paradigm in
Al applications today. Even in this environment, ResNet models can still play an
irreplaceable role in specific scenarios. In scenarios such as wearable devices and
in-vehicle devices, where there are limitations on computing power and energy
consumption, it is more difficult to deploy large models. At this time, ResNet architecture
models can take advantage of its simplicity and lightweight. In addition, in the field of
security, health care, and other sample data difficult to collect, large-scale pre-trained
model solutions are difficult to use, while the direct use of ResNet models is more suitable
for learning under such low training data conditions, and can effectively save the cost of
computing and manual data labeling.

With the outbreak of the new crown epidemic in 2020, Didi has developed a mask
recognition and prevention system, aiming to protect the health of drivers and passengers.
The face recognition module of this system contains a mask attribute recognition model,
and this model is improved based on ResNet50. Using the feature that masks are relatively
stable in the face position, an attention learning mechanism is introduced based on
ResNet50 to enhance the feature extraction of the mask region and enable better detection
of difficult samples. This technology of DDT was deployed in the pre-departure intelligent
exit system and in-vehicle devices during the epidemic, and is open and open source to the
whole society. The model source code is available in DiDi's open-source repository at
github.com/didi/maskdetection.
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FIGURE 9. Overall block diagram of face-wearing mask recognition

On International Day of the Deaf in September 2020, Tencent Multimedia Fusion Lab
opened the "Tian Lai AI" audio technology, which aims to create a cochlear implant with
deep learning technology for people with hearing impairment and improve the hearing
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experience of people with hearing impairment. The technology uses a residual network
structure to process the collected noise, enabling deep-learning model noise reduction on a
low-power cell phone terminal. The average speech recognition rate of the cochlear implant
deployed with the Celestial Al technology reached 96.28%.

In February 2021 ByteDance AVG (Advanced Video Team) proposed DAM, a filter
built by the residual convolutional neural network, which aims to reduce distortion in the
video compression process. AVG put the technology into a BVC encoder and applied it in
video processing of apps such as Jitterbug and Today's Headlines to bring users a higher
quality playback experience.Figure6.1
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FIGURE 10. Deep convolutional neural network based on residual unit stacking in DAM

DiDi's AR real-world navigation product aims to solve the problem of intricate internal
routes in large indoor locations such as airports, stadiums, and subway stations. The
orientation estimation module of this AR navigation product uses a model called
heading-confidence, which uses ResNet and LSTM as the framework. Among them,
ResNet is responsible for regressing the walking speed, while LSTM is responsible for
regressing the walking orientation. The product is currently online in 24 airports, shopping
malls, and train stations in Zhengzhou, Shenzhen, and Tokyo, Japan, and according to the
data, it can help users save nearly 25% of their time.
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FIGURE 11. ResNet-IBN architecture diagram

2022 ByteDance Volcano Speech Team released its latest music retrieval system
ByteCover2. The system mainly serves the cover recognition task (CSI) and employs a
multi-task learning paradigm based on residual networks jointly with the ResNet-IBN
model. the ResNet-IBN model is capable of extracting robust and discriminative vector
representations from audio inputs. ByteCover2 achieves SoTA performance on the
Da-Tacos test dataset that far exceeds that of other schemes.
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